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Motivation
In the past few years:

Phase transitions in statistical physics→ algorithms

In this work, we study the converse:
Can we study phase transitions in statistical physics via algorithmic techniques?

Ising model
• Con�guration: σ ∈ {+,−}V
• Edge potentials: φe(σu, σv ) = {β if σu 6= σv1 otherwise

Fig. 1: A spin con�guration with weight β3

Ising model as cut generating polynomial

ZG(β) = ∑
S⊆V

β|E(S,V \S)| = |E |∑
k=0 γkβ

k

where γk := number of k-edge cuts

Gibbs distribution: Pr[(S, V \ S)] = 1
ZG(β) · β|E(S,V \S)|
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Two notions of phase transition
De�nition I. Decay of long range correlations (informal)

Let e and f be any edges that are “far apart”. Then in a random cut,

Pr[edge e is cut | edge f is cut] ≈ Pr[edge e is cut]
The study of algorithms based on correlation decay (notably, Weitz’s algorithm)
has been fruitful

De�nition II. Analyticity of free energy (informal)

The “free energy” logZ is analytic in a complex neighborhood.

•Analyticity ≈ continuity of observables: the average cut size is precisely β · d logZ
dβ

•Analyticity of free energy ≡ absence of zeros
• Even when only positive real-valued parameters make physical sense, complex-valued

parameters are essential to the study of phase transitions
•Algorithmic use of location of zeros originated only recently in the work of Barvinok
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Question
What relationship, if any, do the two notions (decay of correlations and zero-freeness)
have? For example, can we use one to prove the other?

Prior works, and Lee-Yang vs Fisher zeros

Lee-Yang zeros: view λ as variable

ZβG(λ) = ∑
S⊆V

β|E(S,V \S)|λ|S|

Fig. 3: Lee-Yang theorem: if β < 1, every
zero is on the unit circle |λ| = 1

Fisher zeros: view β as variable

ZG(β) = ∑
S⊆V

β|E(S,V \S)|
Unlike LY, far from being well-understood

• For general Fisher zeros, Barvinok
and Soberón: ZG(β) 6= 0 if |β − 1| <
c/∆, for c ≈ 0.34
• Recently Peters and Regts: In the

hard-core model, zero-free regions
can be extended to the entire correla-
tion decay regime

Our result: correlation decay implies zero-
freeness in the Ising model

Fig. 4: Zero-free regions for Fisher zeros (illustrative only)

Theorem. correlation decay implies zero-freeness in the Ising model

ZG(β) does not vanish in a complex open region containing the entire correla-
tion decay interval B := (∆−2∆ , ∆∆−2).

Remark. Our proof crucially exploits the correlation decay property!

By-product: e�cient algorithms to approximate ZG(β) in the same region.By-product: e�cient algorithms to approximate ZG(β) in the same region.

Our technique: Weitz’s algorithm

• Choose any vertex, say u, then

ZG(β) = ∑
S⊆V

β|E(S,V \S)| = ∑
S⊆V
u∈S

β|E(S,V \S)| + ∑
S⊆V
u6∈S

β|E(S,V \S)| = Σ+ + Σ−
• Consider the ratio

RG,u(β) := Σ+Σ−
• To show ZG(β) 6= 0, it su�ces that Σ− 6= 0 and RG,u(β) 6= −1
Weitz’s algorithm provides a recurrence F (·) for computing the ratio RG,u(β)

Fig. 5: The graph G and a vertex u

Given the ratios at v1, · · · , vk , then the ratio at
u is given by RG,u = F

(
RG1,v1, · · · , RGk ,vk),

where

Fβ,k,s(~x) := βs
k∏
i=1

β + xi
βxi + 1

Proof sketch
To show RG,u 6= −1, it su�ces to design a complex neighborhood D such that

1. F (Dk ) ⊆ D
2.−1 6∈ D
3.D contains all the “starting points” of Weitz’s algorithm

To �nd such a set D, the key steps are:
• For “convex” region D, the univariate recurrence f (·) satis�es f (D) = F (Dk )
• Therefore it su�ces to show f (D) ⊆ D
• For a suitable choice of potential function φ, we show that φ◦f ◦φ−1 approximately

contracts every rectangular region that contains the �xed point φ(1).
•We choose a “convex” D so that φ(D) ≈ a rectangular region for every real valued
β ∈ B, then we show that our proof is robust under set approximation

•As a result, for every β ∈ B, there is a constant sized complex neighborhood in
which Dβ still works for complex β′ close enough to β

Open Problems
Is “correlation decay implies absence of zeros” a general phenomenon in spin
systems and graphical models?

Connections of locations of zeros, to algorithms such as MCMC and the correlation
decay approach?
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