A Deterministic Algorithm for Counting Colorings with 2Δ Colors

Jingcheng Liu (UC Berkeley —→ Caltech)

Joint work with Alistair Sinclair (UC Berkeley) and Piyush Srivastava (TIFR, India)

Approximate counting

- Consider proper q-colorings of a graph G
- Let $\Delta := \Delta(G)$ be the maximum degree

- If $q \ge \Delta + 1$:
 - G has a q-coloring, which can be found efficiently
 - How many q-colorings does G have?

#P-complete, approximation?

Approximate counting

- Compute $(1 \pm \varepsilon) \cdot (\#q\text{-colorings})$
- Equivalent to
 - (Approximate) sampling

Sample a *q*-coloring uniformly at random?

• Approximate inference

Given the color of a vertex u,

what can you infer about the color of another vertex v?

Approximate root-finding

• ...

Our main result

Our algorithmic result:

For any integer $q \ge 2\Delta$, and bounded-degree graph G, there exists a deterministic *FPTAS*, which outputs \hat{Z} s.t.

$$\hat{Z} \in (1 \pm \varepsilon)(\#q - \text{colorings}(G))$$

in time $\operatorname{poly}(|G|,1/\epsilon)$ for lacksquare

Triangle-free graphs:

For any integer $q \ge 1.7633\Delta$ β , and triangle-free graph G of bounded degree, the above PTAS also works

Dobrushin condition

[Gamarnik, Katz and Mishra] 1. [633 is closely related to \underline{strong} $\underline{spatial\ mixing}$, which is the unic $xe^{1/x}=1$

Prior works (incomplete list):

- Randomized MCMC for $q \ge 2\Delta + 1$ [Jerrum]
- Randomized MCMC for $q \ge (\frac{11}{6} \epsilon)\Delta$ [Chen et al.] [Vigoda]
- Deterministic algorithm for $q \ge 2.58\Delta + 1$ [Lu and Yin]
- Deterministic algorithm for $q=4, \Delta=3$ [Lu et al.]

Computational phase transition

Our work: exploit a formal connection between algorithms and phase transition.

Crucially we exploit both directions

• Many problems have a "computational phase transition" (roughly):

Easy

NP-hard

- In some cases, known to coincide with statistical physics phase transition:
 - Hardcore model
 - Anti-ferromagnetic Ising/2-spin model

•

Phase transitions ≈ Discontinuity

In statistical physics

Observable, e.g., mean magnetization :≈ average number of +-spin vertices

Approximate counting

The Potts model

- A graph G=(V,E)
- Configuration $\sigma: V \to [q]$
- The partition function

$$Z_G(\mathbf{w}) := \sum_{\sigma: V \to [q]} \mathbf{w}^{(\# \text{monochromatic edges})}$$

$$= \sum_{\sigma: V \to [q]} \mathbf{w}^{|E_{=}(\sigma)|}.$$

$$\sigma: V \to [q]$$

Example:

- $Z_G(0) = (\# \text{ valid } \mathbf{q}\text{-colorings of } G)$
- q=2: Ising model

Gibbs distribution:

$$\Pr[\sigma] = \frac{1}{Z_G(\mathbf{w})} \cdot \mathbf{w}^{|E_{=}(\sigma)|}$$

Phase transitions formally:

Geometry of polynomials

Lee-Yang theory:

Phase transition ≈ complex zeros of Z

Recall the partition function: $Z_G(\mathbf{w}) := \sum_{\mathbf{w}} \mathbf{w}^{|E_{=}(\sigma)|}$

$$Z_G(\mathbf{w}) := \sum_{\sigma: V \to [\mathbf{q}]} \mathbf{w}^{|E_{=}(\sigma)|}$$

Observable:

$$\mathbb{E}_{\sigma}|E_{=}(\sigma)| = \sum_{\sigma:V\to[q]} |E_{=}(\sigma)| \cdot \Pr[\sigma]$$
$$= \mathbf{w} \cdot \frac{\partial \log Z_{G}(\mathbf{w})}{\partial \mathbf{w}}$$

Analyticity of log $Z \approx Continuity$ of observables

Lack of phase transition ≈ **Lack of complex zeros**

Algorithms from Phase transitions: Barvinok's interpolation

Recall the partition function:
$$Z_G({\color{red} {m w}}) := \sum_{\sigma: V o [{\color{red} {m q}}]} {\color{red} {m w}}^{|E_=(\sigma)|}$$

[Barvinok, Barvinok and Soberon]

- Consider the <u>Taylor expansion</u> of log Z
- In a zero free region, log Z can be approximated to $\pm \epsilon$ by its k-th order Taylor series for $k = O(\log(n/\epsilon))$
- $\log Z_G(w) \pm \epsilon \iff (1 \pm \epsilon) \cdot Z_G(w)$
- k-th order Taylor series is determined by the first k+1 coefficients of Z
- Naively computing the first k+1 coefficients of Z takes time $O(n^k)$
- \Longrightarrow Quasi-polynomial time algorithm for $k = O(\log(n/\epsilon))$
- Exploiting the combinatorial structure speeds up to $O(n(e\Delta)^k)$

Fisher zeros of the Potts model

Recall the partition function:

$$Z_G(\mathbf{w}) := \sum_{\sigma: V \to [q]} \mathbf{w}^{|E_{=}(\sigma)|}$$

Our zero-freeness result:

Fix any integer q such that $q \geq 2\Delta$. Then there exists a constant τ_{Δ} such that $Z_G(\boldsymbol{w}) \neq 0$ when $\boldsymbol{w} \in B([0,1], \tau_{\Delta})$

Prior to our work:

- $q \ge e\Delta + 1$ [Bencs. et. al.]: similar region
- $q \ge 7.964\Delta$ [Sokal] or $q \ge 6.907\Delta$ [Fernández and Procacci]: entire unit disk

Potts model (triangle-free)

$$Z_G(\mathbf{w}) := \sum_{\sigma: V \to [\mathbf{q}]} \mathbf{w}^{|E_{=}(\sigma)|}$$

Triangle-free graphs:

Fix any integer q such that: $q \ge 1.7633\Delta + \beta$, there exists a constant τ_{Δ} such that

 $Z_G(\mathbf{w}) \neq 0$ if G is triangle-free and $\mathbf{w} \in B([0,1], \tau_{\Delta})$

> FPTAS for bounded degree graphs

Phase transitions from analysis of algorithms

Zero-freeness using algorithmic ideas

If G has a valid q-coloring, then
$$Z_G(w) \geq 1$$
 It suffices to prove that
$$\left|\frac{Z_G(\widetilde{w})}{Z_G(w)}\right| > 0$$

Ratios and Pinnings

Fix a vertex v

 $Z_{G,v}^{(i)}(\omega)$: colorings in which vertex v receives color i

$$Z_G(\omega) = \sum_{i \in L(v)} Z_{G,v}^{(i)}(\omega) \qquad \qquad Z_G(\widetilde{\omega}) = \sum_{i \in L(v)} Z_{G,v}^{(i)}(\widetilde{\omega}) \\ = Z_{G,v}^{(j)}(\omega) \cdot \sum_{i \in L(v)} \frac{Z_{G,v}^{(i)}(\omega)}{Z_{G,v}^{(j)}(\omega)} \qquad \qquad = Z_{G,v}^{(j)}(\widetilde{\omega}) \cdot \sum_{i \in L(v)} \frac{Z_{G,v}^{(i)}(\widetilde{\omega})}{Z_{G,v}^{(j)}(\widetilde{\omega})} \\ \text{Induction} \qquad \qquad \text{Consider } R_{G,v}^{(i,j)}(\omega) := \frac{Z_{G,v}^{(i)}(\omega)}{Z_{G,v}^{(j)}(\omega)} \text{ inductively}$$

We show that $R_{G,v}^{(i,j)}(\widetilde{\boldsymbol{w}}) \approx R_{G,v}^{(i,j)}(\boldsymbol{w})$

Tree recurrence

At every vertex of the tree, the two computations remain close

We treat the tree recurrence as a complex dynamical system:

- Not every orbit is well-behaved (unless $q \gg 2\Delta$): main barrier
- Insight: There exists a "high entropy" (nice) orbit, which is well-behaved

High entropy condition

Consider list-coloring

For any vertex u in G, any $\mathbf{w} \in [0, 1]$ and any color i,

$$\Pr_{G, \mathbf{w}}[c(u) = i] \le \frac{1}{\Delta + 2}$$

Lemma:

For any list-coloring instance such that $q \ge 2\Delta + 2$, or the graph is triangle-free and $q > 1.76\Delta + \beta$, then our "high entropy condition" holds

A more careful argument shows that $q \ge 2\Delta$ suffices

Conjecture:

For graphs of higher girth, $q \ge \alpha \Delta + \beta$ for a smaller α should suffice

Summary of the induction

$$Z_{G}(\mathbf{w}) = \sum_{i \in L(v)} Z_{G,v}^{(i)}(\mathbf{w})$$

$$= Z_{G,v}^{(j)}(\mathbf{w}) \cdot \sum_{i \in L(v)} \frac{Z_{G,v}^{(i)}(\mathbf{w})}{Z_{G,v}^{(j)}(\mathbf{w})}$$

$$= Z_{G,v}^{(j)}(\mathbf{w}) \cdot \sum_{i \in L(v)} \frac{Z_{G,v}^{(i)}(\mathbf{w})}{Z_{G,v}^{(j)}(\mathbf{w})}$$

$$= Z_{G,v}^{(j)}(\mathbf{w}) \cdot \sum_{i \in L(v)} \frac{Z_{G,v}^{(i)}(\mathbf{w})}{Z_{G,v}^{(j)}(\mathbf{w})}$$

Inductively

$$\left| \frac{Z_{G,v}^{(j)}(\widetilde{\boldsymbol{w}})}{Z_{G,v}^{(j)}(\boldsymbol{w})} \right| \ge e^{-\epsilon(n-1)}$$

$$R_{G,v}^{(i,j)}(\widetilde{\boldsymbol{w}}) \approx e^{\epsilon} \cdot R_{G,v}^{(i,j)}(\boldsymbol{w})$$

Recap

 One can exploit the analysis of algorithms (tree recurrence) to study phase transitions (prove zero-freeness)

$$\frac{Z_{G,v}^{(i)}(\mathbf{w})}{Z_{G,v}^{(j)}(\mathbf{w})} = \frac{Z_{G,v}^{(i)}(\widetilde{\mathbf{w}})}{Z_{G,v}^{(j)}(\widetilde{\mathbf{w}})}$$

 Conversely, zero-freeness results can also be exploited algorithmically (via Barvinok's interpolation)

Discussion: Comparison to decay of correlations

Truncating

Guess the values

Tree recurrence

Issue: guessing the values explicitly can be hard

In proving zero-freeness, we only need that "good" values exist

Comparison to MCMC

Future direction:

- Generalize to more sophisticated coupling argument
- De-randomize MCMC

Thanks

Q & A