Zeros of ferromagnetic 2-spin systems

Jingcheng Liu (Caltech)

Joint work with **Heng Guo** (University of Edinburgh) and **Pinyan Lu** (Shanghai University of Finance and Economics)

Spin systems

Given a graph G = (V, E)

- Configuration $\sigma: V \to \{+, -\}$
- Edge interactions
 - '++' edge: β
 - '- -' edge: γ
 - '+ -' edge: 1

- External field λ for every vertex assigned '-'
- The partition function

$$Z_G(\beta, \gamma, \lambda) := \sum_{\sigma: V \to \{+, -\}} \beta^{('++') \text{ edges}} \gamma^{('--') \text{ edges}} \lambda^{(\#'-') \text{ -spin vertices}}.$$

Spin systems

Given a graph G = (V, E)

$$Z_G(\beta, \gamma, \lambda) := \sum_{\sigma: V \to \{+, -\}} \beta^{(+++') \text{ edges}} \gamma^{(--') \text{ edges}} \lambda^{(\# -') \text{ -spin vertices}}.$$

Gibbs distribution

$$\Pr[\sigma] = \frac{1}{Z_G(\beta, \gamma, \lambda)} \cdot \beta^{(++') \text{ edges}} \gamma^{(--') \text{ edges}} \lambda^{(\#'-') \text{ -spin vertices}}$$

- Ferromagnetic if $\beta \gamma > 1$: favors agreements
- WLOG, assume $\beta \ge \gamma$
- $\beta = \gamma$: Ising model

Approximate counting

- Compute $(1 \pm \varepsilon) \cdot Z_G$
- Equivalent to
 - (Approximate) sampling

Sampling from the Gibbs distribution?

Approximate inference

Given partial observation of the system, what can you infer about the rest?

Approximate root-finding

• ...

Prior work

• Antiferromagnetic regime: there is a threshold $\lambda_c(\beta, \gamma)$

[Sly-Sun], [Li-Lu-Yin], [Sinclair-Srivastava-Thurley]

- Ising model: MCMC, Barvinok's interpolation
 [Jerrum-Sinclair], [L.-Sinclair-Srivastava]
- Ferromagnetic 2-spin:

Further, assuming $\gamma \leq 1$:

SSM [Guo-Lu]
$$\lambda \leq \left(\frac{\beta}{\gamma}\right)^{d_c}$$
 $\lambda \geq \left(\frac{\beta}{\gamma}\right)^{d'}$

Our main result

Main algorithmic result:

Fix any $\beta, \gamma > 0$ and $\beta\gamma \geq 1$, $\beta \geq \gamma$. If $\lambda < \left(\frac{\beta}{\gamma}\right)^{d^{\star/2}}$, then there exists a

deterministic *FPTAS*, which outputs \hat{Z} s.t.

$$\hat{Z} \in (1 \pm \varepsilon) \cdot Z_G$$

in time $\operatorname{poly}(|G|,1/\epsilon)$ for any bounded degree graph G

$$\lambda^{\star} := \left(\frac{\beta}{\gamma}\right)^{d^{\star/2}}$$

$$d^{\star} := \frac{\pi}{\tan^{-1} \sqrt{\beta \gamma - 1}}$$

Barvinok's interpolation

$$Z_G(\beta, \gamma, \lambda) := \sum_{\sigma: V \to \{+, -\}} \beta^{(+++') \text{ edges}} \gamma^{(--') \text{ edges}} \lambda^{(\#'-') \text{-spin vertices}}.$$

Fix β , γ , view Z_G as a polynomial in λ

Key: leverage that Z_G does not vanish in certain complex region

[Barvinok, Barvinok and Soberon]

- Consider the <u>Taylor expansion</u> of $\log Z_G$
- In a zero free region, $\log Z_G$ can be approximated to $\pm \epsilon$ by its k-th order Taylor series for $k = O(\log(n/\epsilon))$
- $\log Z_G \pm \epsilon \iff (1 \pm \epsilon) \cdot Z_G$
- k-th order Taylor series is determined by the first k+1 coefficients of Z
- Naively computing the first k+1 coefficients of Z takes time $O(n^k)$
- \Longrightarrow Quasi-polynomial time algorithm for $k = O(\log(n/\epsilon))$
- Exploiting the combinatorial structure speeds up to $O(n(e\Delta)^k)$

Lee-Yang zeros of Ferromagnetic 2-spin systems

$$Z_G(\beta, \gamma, \lambda) := \sum_{\sigma: V \to \{+, -\}} \beta^{(+++') \text{ edges}} \gamma^{(--') \text{ edges}} \lambda^{(\#'-') \text{-spin vertices}}.$$

Lee-Yang theorem for the Ising model

Let $\beta \geq 1$, then $Z_G(\beta, \beta, \lambda) = 0 \implies |\lambda| = 1$

Main technical result:

Fix any $\beta, \gamma > 0$ and $\beta\gamma > 1$, $\beta \geq \gamma$. For any graph G with minimum degree 2, $Z_G(\beta, \gamma, \lambda)$, viewed as a polynomial in λ , does not vanish in a

constant sized neighborhood containing $\left[0, \left(\frac{\beta}{\gamma}\right)^{d^*/2}\right]$

Asano's contraction method

Multivariate partition function

$$Z_G(\beta, \gamma, \lambda) := \sum_{\sigma: V \to \{+, -\}} \beta^{('++') \text{ edges}} \gamma^{('--') \text{ edges}} \lambda^{(\# '-') \text{ -spin vertices}}.$$

$$\text{Multivariate:} \qquad Z_G({\color{red}\beta},{\color{gray}\gamma},{\color{gray}\bar{\lambda}}) := \sum_{S \subseteq V} {\color{red}\beta}^{|E[S^c]|} {\color{gray}\gamma}^{|E[S]|} \prod_{v \in S} {\color{gray}\lambda}_v.$$

Asano's contraction: base case

$$Z_G(\beta, \gamma, \vec{\lambda}) := \sum_{S \subseteq V} \beta^{|E[S^c]|} \gamma^{|E[S]|} \prod_{v \in S} \lambda_v.$$

The partition function on a single edge $\gamma \lambda_1 \lambda_2 + \lambda_1 + \lambda_2 + \beta$

Consequence of the Grace-Walsh-Szegő coincidence theorem

Let ζ_1, ζ_2 be the two complex roots of

$$\gamma \lambda^2 + 2\lambda + \beta = 0.$$

Then for any closed circular region K containing ζ_1, ζ_2 , the polynomial

$$\gamma \lambda_1 \lambda_2 + \lambda_1 + \lambda_2 + \beta$$

can only vanish if either $\lambda_1 \in K$ or $\lambda_2 \in K$

Asano's contraction: invariants

$$Z_G(\beta, \gamma, \vec{\lambda}) := \sum_{S \subseteq V} \beta^{|E[S^c]|} \gamma^{|E[S]|} \prod_{v \in S} \lambda_v.$$

Minkowski product of sets

For sets $A, B \subseteq \mathbb{C}$,

$$A \cdot B := \{ a \cdot b : a \in A, b \in B \}$$
$$A^d := \left\{ \prod_{i=1}^d a_i : \forall i, a_i \in A \right\}$$

For carefully chosen regions $K(\beta, \gamma)$, we show the following is preserved under contraction

Main technical lemma:

Fix any $\beta, \gamma > 0$ and $\beta\gamma > 1$, $\beta \geq \gamma$. The partition function $Z_G(\beta, \gamma, \overline{\lambda})$ can vanish only if $\exists i : \lambda_i \in (-1)^{d+1} \cdot K^d$, where $d = \deg_G(i)$

Minkowski product of circular regions

Considerations in choosing the region $K(\beta, \gamma)$:

- $K(\beta,\gamma)$ needs to contain ζ_1 and ζ_2 (the two complex roots in the base case)
- maximize the intersection of zero-free regions

Figure 4. Our region $K = \overline{\mathcal{D}(c,r)}$, \mathcal{K}_2 , \mathcal{K}_3 , \mathcal{K}_4 and \mathcal{K}_5 in the case of $\beta = 4$ and $\gamma = \frac{1}{2}$. Here, the intercept of \mathcal{K}_d on the positive real line is minimised at d = 4 for all $d \ge 2$.

Future directions

- Proving zero-freeness all the way up to λ_c
 - The current threshold is the best one can get with the invariant that we chose
- What is the correct threshold?
 - The gadget construction in the hardness proof introduces an integrality gap
 - λ_c is not correct either: algorithms can be found beyond λ_c

Thanks

Q & A